ECDSA,中文名为椭圆曲线签名算法,椭圆曲线签名算法是比特币协议里使用的,是使用椭圆曲线对数字签名算法(DSA)的模拟。
椭圆曲线签名算法于1999年成为ANSI标准,并于2000年成为IEEE和NIST标准。它在1998年既已为ISO所接受,并且包含它的其他一些标准亦在ISO的考虑之中。
与普通的离散对数问题(discrete logarithm problemDLP)和大数分解问题(integer factorization problemIFP)不同,椭圆曲线离散对数问题(elliptic curve discrete logarithm problemECDLP)没有亚指数时间的解决方法。因此椭圆曲线密码的单位比特强度要高于其他公钥体制。
椭圆曲线密码(ECC)可以看作是椭圆曲线对先前基于离散对数问题(DLP)的密码系统的模拟,只是火币网元旦互动群元素由素域中的元素数换为有限域上的椭圆曲线上的点。椭圆曲线签名算法体制的安全性基于椭圆曲线离散对数问题(ECDLP)的难解性。
椭圆曲线离散对数问题远难于离散对数问题,椭圆曲线签名算法的单位比特强度要远高于传统的离散对数系统。因此在使用较短的密钥的情况下,ECC可以达到于DL系统相同的安全级别。这带来的好处就是计算参数更小,,密钥更短,运算速度更快,签名也更加短小。因此椭圆曲线签名算法尤其适用于处理能力、存储空间、带宽及功耗受限的场合。
郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。
郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。